International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) ISSN(P): 2319-3972; ISSN(E): 2319-3980 Vol. 5, Issue 3, Apr - May 2016; 7-18 © IASET

$\tau^* - \ddot{g}$ closed sets in topological spaces

T. INDIRA¹ & S. GEETHA²

¹PG and Research, Department of Mathematics, Seethalakshmi Ramaswami College, Trichy, Tamil Nadu, India ²Department of Mathematics, Seethalakshmi Ramaswami College, Trichy, Tamil Nadu, India

ABSTRACT

In this paper a class of sets called $\tau^* - g$ - closed sets and $\tau^* - g$ - open sets and a class of maps in topological spaces is introduced and some of its properties are discussed.

KEYWORDS: cl*, τ^* -Topology, $\tau^* - \overset{\cdots}{g}$ - Open Set, $\tau^* - \overset{\cdots}{g}$ - Closed set, $\tau^* - \overset{\cdots}{g}$ - Continuous Maps

2010 Hematics Subject Classification: Primary 57A05, Secondary 57N05

1. INTRODUCTION

The concept of generalized closed sets was introduced by Levine []. Dunham [4] introduced the concept of closure operator cl* and a topology τ^* and studied some of its properties. Pushpalatha, Easwaran and Rajarubi [11] introduced and studied τ^* -generalized closed sets, and τ^* -generalized open sets. Using τ^* generalized closed sets, Easwaran and Pushpalatha [5] introduced and studied τ^* -generalized continuous maps.

The purpose of this paper is to introduce and study the concept of a new class of sets, namely $\tau^* - g$ - closed sets and a new class of maps $\tau^* - g$ - continuous maps. Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, cl (A), cl*(A)

PRELIMINARIES

Definition

For the subset A of a topological space X the generalized closure operator cl* is defined by the intersection of all g-closed sets containing A.

Definition

For a topological space X, the topology τ^* is defined by $\tau^* = \{G: cl^* (G^C) = G^C\}.$

and A^C denote the closure, g-closure and complement of A respectively.

Example

Let $X = \{a, b, c\}$ and $\tau = \{x, \phi, \{a, b\}\}$. Then the collection of subsets

 $\tau^* = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ is a topology on X.

Definition

A subset A of a topological space X is called $\tau^* - g - closed$ set if $cl^*(A) \subseteq G$, whenever $A \subseteq G$ and G is τ^* -sg-open.

The complement of $\tau^* - \overset{\cdots}{g}$ - closed set is called the $\tau^* - \overset{\cdots}{g}$ - open set.

Example

Let X = {a, b, c} with $\tau = \{X, \phi, \{a\}\}$. Then the sets {X}, { ϕ }, {b}, {c}, {a, b}, {b, c}, {a, c} are $\tau^* - g$ -closed sets in X.

Theorem

Every closed set in X is $\tau^* - \ddot{g}$ -closed.

Proof

Let A be a closed set.

Let $A \subseteq G$. Since A is closed, $cl(A) = A \subseteq G$, where G is τ^* -sg-open. But $cl^*(A) \subseteq cl(A)$. Thus we have $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* -sg-open.

Hence A is $\tau^* - g - closed$.

Theorem

Every τ^* -closed set in X is $\tau^* - g$ -closed.

Proof

Let A be a τ^* -closed set. Let A \subseteq G, where G is τ^* -sg-open.

Since A is τ^* -closed, $cl^*(A) = A \subseteq G$.

Thus, we have $cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^* -sg-open.

Hence A is $\tau^* - g - closed$.

Theorem

Every g-closed set in X is a $\tau^* - g$ - closed but not conversely.

Proof

```
Let A be a g-closed set.
```

Assume that $A \subseteq G$, G is τ^* -sg-open in X.

Since A is g-closed, $cl(A) \subseteq G$.

But $cl^{*}(A) \subseteq cl(A)$.

 \Rightarrow cl*(A) \subseteq G, whenever A \subseteq G and G is τ *-sg-open.

Therefore A is $\tau^* - g$ -closed

The converse of the above theorem need not be true as seen from the following example.

Example

Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}\}$. Then the set $\{a\}$ is τ^* - \ddot{g} -closed but not g-closed.

Remark

The following example shows that τ^* - \ddot{g} -closed sets are independent from sp-closed set, sg-closed set, α -closed set, pre closed set, gs-closed set, α g-closed set and g α -closed set.

Example

Let $X = \{a, b, c\}$ and $\{a, b, c, d\}$ be the topological spaces.

- Consider topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}, \{a, b\}$ and $\{a, c\}$ are τ^* - \ddot{g} -closed but not sp-closed.
- Consider the topology $\tau = \{X, \phi, \{a, b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sp-closed but not τ^* -g-closed.
- Consider the topology τ = {X, φ}. Then the sets {a}, {b}, {c}, {a, b}, {b, c} and {a, c} are τ*-ÿ-closed but not sg-closed.
- Consider the topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$. Then the sets $\{a\}$ and $\{b\}$ are sg-closed but not τ^* \ddot{g} -closed.
- Consider the topology τ = {X, φ, {a}}. Then the sets {a}, {b}, {c}, {a,b} and {a, c} are τ*-ÿ-closed but α-closed.
- Consider the topology $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the set $\{b\}$ is α -closed but not τ^* - \ddot{g} -closed.
- Consider the topology $\tau = \{X, \phi, \{a\}\}$. Then the sets $\{a\}, \{a, b\}$ and $\{a, c\}$ are τ^* - \ddot{g} -closed but not pre-closed.
- Consider the topology $\tau = \{X, \phi, \{b\}, \{a, b\}\}$. Then the set $\{a\}$ is

pre-closed but not τ^* - \ddot{g} -closed.

- Consider the topology τ = {X, φ}. Then the sets {a}, {b}, {c}, {a, b}, {b, c} and {a, c} are τ*- ÿ-closed but not gs-closed.
- Consider the topology $\tau = \{X, \phi, \{b\}\}$. Then the sets $\{b\}$, $\{a, b\}$ and $\{b, c\}$ are τ^* - \ddot{g} -closed but not semi pre-closed.
- Consider the topology $\tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. The sets $\{b\}$ and $\{c\}$ are semi pre-closed but not τ^* - \ddot{g} -closed.
- Consider the topology τ = {X, φ, {a}, {b}, {a, b}}. Then the sets {b} and {a, b} are gsp-closed but not τ*- ÿ closed.
- Consider the topology $\tau = \{Y, \phi, \{a\}\}$. Then the set $\{a\}$ is τ^* \ddot{g} -closed but not gsp-closed.

Remark

From the above discussion, we obtain the following implications.

 $A \rightarrow B$ means A implies B, $A \not\rightarrow B$ means A does not imply B and A $\leftrightarrow A$ B means A and B are independent.

Theorem

For any two sets A and B, $cl^*(A \cup B) = cl^*(A) \cup cl^*(B)$.

Proof

Since $A \subseteq A \cup B$, we have $cl^*(A) \subseteq cl^*(A \cup B)$ and since $B \subseteq A \cup B$, we have $cl^*(B) \subseteq cl^*(A \cup B)$. Therefore, $cl^*(A) \cup cl^*(B) \subseteq cl^*(A \cup B)$ (1)

$\tau^* - \ddot{g}_{\text{ Closed Sets in Topological Spaces}}$

cl*(A) and cl*(B) are the closed sets

Therefore, $cl^*(A) \cup cl^*(B)$ is also a closed set. Again, $A \subseteq cl^*(A)$ and $B \subseteq cl^*(B)$

 $\Rightarrow A \cup B \subseteq cl^*(A) \cup cl^*(B)$

Thus, $cl^*(A) \cup cl^*(B)$ is a closed set containing $A \cup B$. Since $cl^*(A \cup B)$ is the smallest closed set containing $A \cup B$.

We have $cl^*(A \cup B) \subseteq cl^*(A) \cup cl^*(B)$ (2)

From (1) and (2),

 $cl^{*}(A \cup B) = cl^{*}(A) \cup cl^{*}(B)$

Theorem

Union of two τ^* - \ddot{g} -closed sets in X is a τ^* - \ddot{g} -closed set in X.

Proof

Let A and B be two $\tau^*\text{-}\,\ddot{g}$ -closed sets.

Let $A \cup B \subseteq G$, where G is τ^* - \ddot{g} -closed.

Since A and B are τ^* - \ddot{g} -closed sets, then $cl^*(A)\subseteq G$ and $cl^*(B)\subseteq G$.

 $cl^{*}(A) \cup cl^{*}(B) \subseteq G$

By the above theorem,

 $cl^{*}(A) \cup cl^{*}(B) = cl^{*}(A \cup B)$

 \therefore cl*(A \cup B) \subseteq G, where G is τ *-sg-open.

Hence $A \cup B$ is a τ^* - \ddot{g} -closed set.

Theorem

A subset A of X τ^* - \ddot{g} -closed if and only if cl*(A)-A contains no non-empty τ^* - \ddot{g} -closed set in X.

Proof

Let A be a τ^* - \ddot{g} -closed set.

Suppose that F is a non-empty τ^* - \ddot{g} -closed subset of cl*(A) – A.

Now, $F \subseteq cl^*(A) - A$

Then $F \subseteq cl^*(A) \cap A^C$

Since $cl^{*}(A) - A = cl^{*}(A) \cap A^{C}$

 $F{\subseteq}cl^{*}\!(A) \text{ and } F{\subseteq}A^{C}$

$$\Rightarrow A \subseteq F^C$$

Since F^{C} is a τ^{*} -open set and A is a τ^{*} - \ddot{g} -closed, $cl^{*}(A) \subseteq F^{C}$

(i.e) $F \subseteq [cl^*(A)]^C$

Hence $F \subseteq cl^*(A) \cap [cl^*(A)]^C = \phi$

(i.e) $F = \phi$

Which is a contradiction?

Thus $cl^*(A) - A$ contains no non-empty τ^* -closed set in X.

Conversely, assume that $cl^*(A)$ -A contains no non-empty τ^* -closed set.

Let $A \subseteq G$, G is a τ^* -sg-open.

Suppose that $cl^*(A)$ is not contained in G then $cl^*(A) \cap G^C$ is a non-empty, τ^* -closed set of $cl^*(A) - A$ which is a contradiction.

 \therefore cl*(A) \subseteq G, G is τ *-sg-open.

Hence A is τ^* - \ddot{g} -closed.

Corollary

A subset A of X is τ^* - \ddot{g} -closed if and only if $cl^*(A) - A$ contain no non-empty closed set in X.

Proof

The proof follows from the theorem (6.1.15) and the fact that every closed set is τ^* - \ddot{g} -closed set in X.

Theorem

If a subset A of X is τ^* -ge-closed and A \subseteq B \subseteq cl*(A) then B is τ^* -ge-closed set in X.

Proof

Let A be a τ^* - \ddot{g} -closed set such that A \subseteq B \subseteq cl*(A).

Let G be a τ^* -sg-open set of X such that B \subseteq G.

Since A is τ^* - \ddot{g} -closed.

We have $cl^*(A) \subseteq G$, whenever $A \subseteq G$ and G is τ^* -sg-open

Now, $cl^{*}(A) \subseteq cl^{*}(B) \subseteq cl^{*}[cl^{*}(A)]$

 $= cl^{*}(A) \subseteq G$

$\tau^* - \ddot{g}_{\text{ Closed Sets in Topological Spaces}}$

 \therefore cl*(B) \subseteq G, G is τ *-sg-open set.

Hence B is τ^* - \ddot{g} -closed set in X.

Theorem

Let A be a τ^* - \ddot{g} -closed set in (X, τ)

Then A is g-closed if and only if $cl^*(A) - A$ is τ^* -sg-open.

Proof

Suppose A is g-closed in X. Then $cl^*(A) = A$ and so $cl^*(A) - A = \phi$ which is τ^* -open in X.

Conversely, suppose $cl^*(A) - A$ is τ^* -open in X.

Since A is τ^* - \ddot{g} -closed, by theorem (6.1.15)

cl*(A)–A contains no non-empty τ *-closed set of X. Then cl*(A) – A= ϕ

Hence A is g-closed.

Theorem

For $x \in X$, the set $X - \{x\}$ is τ^* - \ddot{g} -closed or τ^* -open.

Proof

Suppose $X - \{x\}$ is not τ^* -open. Then X is the only τ^* -open set containing $X - \{x\}$. This implies $cl^*(X - \{x\}) \subseteq X$. Hence $X - \{x\}$ is a τ^* - \ddot{g} -closed in X.

$\tau^* - \overset{\cdot\cdot}{g} -$ continuous and in topological spaces

In this section, a new type of functions called $\tau^* - g$ -continuous maps, are introduced and some of its properties are discussed.

Definition

A function f from a topological space X into a topological space (Y, σ) is called $\tau^* - g$ – continuous if $f^1(V)$ is

 $\tau^* - g$ - closed set in X for every closed set V in Y.

Example

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}.$

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is $\tau^* - g$ - continuous.

Theorem

If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ from a topological space X into a topological space Y is continuous then it is $\tau^* - \overset{\cdot\cdot}{g}$ - continuous but not conversely.

Proof

Let $f: (X, \tau) \to (Y, \sigma)$ be continuous. Let F be any closed set in Y. Then the inverse image $f^{1}(F)$ is a closed set in X. Since every closed set is $\tau^{*} - g - \text{closed}$, $f^{1}(F)$ is $\tau^{*} - g - \text{closed}$ in X.

$$\therefore$$
 F is $\tau^* - g -$ continuous.

Remark

The converse of the above theorem need not be true as seen from the following example.

Example

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$ Let f: $X \to Y$ be an identity map. Hence f is $\tau^* - g$ - continuous. But f is not continuous, since the set $\{c\}$ is closed in Y but not closed in X.

Theorem

If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is g-continuous then it is $\tau^* - g$ - continuous but not conversely.

Proof

Let $f: (X, \tau) \to (Y, \sigma)$ be g-continuous Let G be any closed set in Y. Then the inverse image $f^1(G)$ is g-closed set in X. Since every g-closed set is $\tau^* - g - closed$, then $f^1(G)$ is $\tau^* - g - closed$ in X.

$$\therefore$$
 f is $\tau^* - g -$ continuous.

Remark

The converse need not be true as seen from the following example.

Example

Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{b, c\}\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an identity map. Here f is $\tau^* - g$ - continuous. But f is not g-continuous, since for the closed set $\{a\}$ in Y, f¹(V) = $\{a\}$ is not g-closed in X.

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map from a topological space (X, τ) into a topological space (Y, σ) then

$au^* - \ddot{g}$ Closed Sets in Topological Spaces

- The following statements are equivalent.
- f is $\tau^* g continuous$.
- The inverse image of each open set in Y is $\tau^* g open$ in X.
- (ii) If $f: (X, \tau) \to (Y, \sigma)$ is $\tau^* g continuous$, then $f(cl_{\tau^*}(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof

Assume that f: $(X, \tau) \rightarrow (Y, \sigma)$ is $\tau^* - g -$ continuous. Let F be open in Y. Then F^C is closed in Y. Since f is $\tau^* - g -$ continuous $f^1(F^C)$ is $\tau^* - g -$ closed in X. But $f^1(F^C) = X - f^1(F)$. Thus. $X - f^1(F)$ is $\tau^* - g -$ closed in X.

 \therefore (a) \Rightarrow (b)

Assume that the inverse image of each open set in Y is $\tau^* - \ddot{g}$ - open in X.

Let G be any closed set in Y. Then G^{C} is open in Y. By assumption, $f^{1}(G^{C})$ is $\tau^{*} - g^{-}$ open in X. But $f^{1}(G^{C}) = X - f^{1}(G)$.

- $\therefore X \cdot f^{1}(G) \text{ is } \tau^{*} \overset{``}{g} \text{ open in } X \text{ and so } f^{1}(G) \text{ is } \tau^{*} \overset{`'}{g} \text{ closed in } X.$
- \therefore f is $\tau^* g$ continuous.

Hence (b) \Rightarrow (a)

Thus (a) and (b) are equivalent

- Assume that f is $\tau^* g$ continuous. Let A be any subset of X, f (A) is a subset of Y. Then cl (f (A)) is a closed subset of Y. Since f is $\tau^* g$ continuous, f¹(cl (f (A)) is $\tau^* g$ closed in x and it containing A. But cl_{τ^*} (A) is the intersection of all $\tau^* g$ closed sets containing A.
 - $\therefore \ cl_{\tau^*} \left(A \right) \subseteq f^{\,l}(cl(f\!\!\left(A \right))$
 - $\Rightarrow f(cl_{\tau^*}(A)) \subseteq cl(f(A))$

Example

Let $X = Y = \{a, b, c\}$. Let $f : X \rightarrow Y$ be an identity map.

- Let $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then f is semi-continuous. But it is not $\tau^* g continuous$. Since for the closed set $V = \{c\}$ in Y, $f^1(V) = \{c\}$ is not $\tau^* g closed$ in X.
- Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}\}$. Then f is $\tau^* g$ -continuous. But it is not semicontinuous. Since for the closed set $V = \{a, c\}$ in Y, $f^1(V) = \{a, c\}$ is not semi-closed in X.
- Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}\}$. Then f is $\tau^* g$ continuous. But it is not sg-continuous. Since for the closed set $V = \{a, c\}$ in Y. $f^1(V) = \{a, c\}$ is not sg-closed in X.
- Let $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$. Then f is $\tau^* g$ -continuous. But it is not gs-continuous. Since for the closed set $V = \{a\}$ in Y, $f^1(V) = \{a\}$ is not gs-closed in X.
- Let $\tau = \{X, \phi, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. Then f is gsp-continuous. But it is not $\tau^* g continuous$. Since for the closed set $V = \{c\}$ in Y, $f^1(V) = \{c\}$ is not $\tau^* g closed$ in X.
- Let $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$. The f is $\tau^* g$ -continuous. But it is not gsp-continuous. Since for the closed set $V = \{c\}$ in Y, $f^1(V) = \{c\}$ is not gsp-closed in X.
- Let $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, c\}\}$. Then f is $\tau^* g$ continuous. But it is not αg -continuous. Since for the closed set V = {b} in Y, f¹(V) = {b} is not αg -closed in X.
- Let τ = {X, φ, {a}} and σ = {Y, φ, {c}, {a, c}, {b, c}}. Then f is τ* g continuous. But it is not precontinuous. Since the open set
 V = {b, c} in Y, f¹(V) = {b, c} is not pre-open in X.
- Let $\tau = \{X, \phi, \{c\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is α -continuous but it is not $\tau^* g$ -continuous. Since for the closed set

 $V = \{b\}$ in Y, $f^{1}(V) = \{b\}$ is not $\tau^{*} - g$ -closed in X.

• Let $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Then f is $\tau^* - g$ - continuous. But it is not α continuous. Since for the open set $V = \{a, c\}$ in Y, $f^1(V) = \{a, c\}$ is not α -open in X.

Remark

From the above discussion, we obtain the following implications.

 $A \rightarrow B$ means A implies B, A $\rightarrow B$ means A does not imply B, and A $\leftrightarrow B$ means A and B are independent.

CONCLUSIONS

The $\tau^* - g$ - closed sets can be used to derive a new homeomorphism, connectedness, compactness and new separation axioms. This concept can be extended to bitopological and fuzzy topological spaces.

REFERENCES

- M.E. Abd El-Monsef, S.N. El.DEEb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1)(1983),77-90.
- K. Balachandran, P. Sundaram and J.Maki, On generalized continuous maps in topological spaces. Em. Fac. Sci. K.ochi Univ.(Math.) 12 (1991), 5-13. Monthly, 70(1963), 36-41.
- 3. J. Dontchev, on generalizing sempreopen sets, Mem. Fac. Sci. Kochi Uni. Ser A, Math., 16(1995), 35-48.
- 4. J.Dontchev, on generalizing semi reopens sets, Mem. Fac. Sci. Kochi Uni. Ser A, Math., (1995), 35-48.
- S. Eswaran and A Pushpalatha, τ* generalized continuous maps in topological spaces, International J. of Math Sci & Engg. Apppls.(IJMSEA) ISSN 0973-9424 Vol.3,No.IV,(2009),pp.67-76.
- Y. Gnanambal, On generalized preregular sets in topological space, Indian J. Pure Appl. Math. (28)3(1997), 351-360.
- 7. T. Indira and S. Geetha , τ_s^* sg -closed sets in topological spaces, International Journal of Mathematics Trends and Technology-Volume 21 No.1-May 2015.

- 8. M. Levine, Generalized closed sets in topology, Rend. Circ. Mat...Palermo, 19,(2)(1970), 89-96.
- A.S. Mashhour, I.A.Hasanein and S.N.El-Deeb, on precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- 10. A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, on α -continuous and α -open mappings, Acta. Math. Hunga. 41(1983), 213-218.
- A.Pushpalatha, S.Eswaran and P.Rajarubi, τ*-generalized closed sets in topological spaces, Proceedings of World Congress on Engineering 2009 Vol II WCE 2009, July 1-3,2009, London, U.K., 1115-1117.
- P.Sundarm, H.Maki and K.Balachandran, sg-closed sets and semi-T_{1/2} spaces. Bull. Fukuoka Univ. Ed...Part III, 40(1991), 33-40.
- 13. Semi open sets and semi continuity in topological spaces, Amer. Math.,
- 14. Semi generalized closed and generalized closed maps, Mem.Fac.Sci.Kochi.